
On testing output faults in the McCluskey Fault Model

ULRIKE BRANDT

Technische Universität Darmstadt
e-mail: brandt@informatik.tu-darmstadt.de

and

HERMANN K.-G. WALTER

Technische Universität Darmstadt
e-mail: walter@informatik.tu-darmstadt.de

ABSTRACT
McCluskey et al. introduced a very general fault model for finite automata. In this paper we will
show that all testable output faults can be tested by a single input word in this model. Furthermore,
in the case of irreducible automata we will show that this is true for all output faults. Our main tool to
prove the results is a careful analysis of the structure of automata especially considering subautomata
and edge-(state)traverses of the transition graph induced by input words.

Keywords: finite automata, faults, testability, subautomata, irreducible automata, traverses

0. Introduction

In [1], [4] and following papers McCluskey et al. developed a very general fault model for
finite automata. A fault of an automaton A is any different automaton with the same inputs,
outputs and states. They considered various classes of faults and gave algorithms for calcu-
lating test sets, i.e. sets of input words so that the resulting outputs indicate whether a fault
is present or not. Testing a fault can be done assuming that the automaton always starts with
the same state (testability) or in (possibly) different states (strong testability). The latter one
is closely related to the structure of the given automaton. This is also true for output faults
– faults which affect only the output-unit. An output fault has the same transitions as the
given automaton. We can show that for a given automaton the class of all its strongly testable
output faults can be tested by a single word. Fault diagnosis is connected to experiments on
automata first studied by Moore [3]. Though faults are not mentioned one can find a few
remarks in [2] touching on this connection. Moreover, McCluskey et al. put some emphasis
on reset mechanisms, though they are not part of the automaton and operate faultfree. In con-
nection with traverses of edges respectively states we will make heavy use of resets. But we
do not assume that they are an additional faultfree part of the automaton under consideration.

2 Ulrike Brandt, Hermann K.-G. Walter

1. Basic Notations and Definitions

An alphabet X is a finite set of letters. The set of words (over X) is the free monoid X∗ over
X with the empty word � as identity. If w = x1 . . .xn (xi ∈ X for 1≤ i≤ n) the length of w is
|w| = n. For L1,2 ⊆ X∗ the complex product is defined by L1L2 = {w1w2|w1 ∈ L1 and w2 ∈
L2}. We use the usual convention for singletons in identifying w with {w}, if no confusion is
possible. X∗ can be partially ordered by the prefix relation defined by

w≤ v(pref)⇐⇒ v ∈ wX∗.

Definition 1.1 A (Mealy-)automaton is a quadruple A = (I,S,O,δ ,λ) where

• I and O are alphabets (inputs respectively outputs)
• S is a finite set (states)
• δ : I×S→ S and λ : I×S→ O are the transition and output functions respectively.

We extend δ and λ to words by the formulas below, where w,v ∈ I∗,s ∈ S

δ (�,s) = s,δ (wv,s) = δ (v,δ (w,s)) (transition formula) and
λ (�,s) =�,λ (wv,s) = λ (w,s)λ (v,δ (w,s)) (response formula).

For letters these extensions are the given δ and λ . Fixing s ∈ S as a starting state we define
the (realized) function λ s(w) = λ (w,s) for w ∈ I∗. Note that |λ s(w)|= |w| always holds. An
automaton A is minimal if and only if

∀s,s′ ∈ S : λ
s = λ

s′ ⇒ s = s′.

For two automata A and A′ with I = I′ and O = O′ a mapping φ : S→ S′ is a homomorphism
if and only if

∀x ∈ I,s ∈ S : δ
′(x,φ(s)) = φ(δ (x,s)) and λ

′(x,φ(s)) = λ (x,s).

If a homomorphism φ is given, it is easy to prove that λ s = λ ′φ(s) for all s ∈ S. A bijective φ

is an isomorphism and we write A =̃ A′ or A =̃φ A′. Note that φ−1 is also an isomorphism.
Another model for a device with finite memory is the Moore-automaton; it is a Mealy-

automaton where the output function is given by

λ (x,s) = µ(δ (x,s)) (x ∈ I,s ∈ S)

with a function µ : S→O (marking). Our constructions will considerably simplify, if we use
Moore-automata. This will be discussed at the proper places.

In the following we will fix I and O and denote the collection of all automata with state
set S by Autom(S). A fault for A ∈ Autom(S) is any A f ∈ Autom(S) with A f 6= A. By
symmetry A is then a fault of A f . We use the subscript “ f ” to denote the fault automaton.
We shall discuss two forms of testability. In the weaker one the test is started with the same
initial state for both automata. In the stronger form they may start in different states.

Definition 1.2 Let A,A f ∈ Autom(S) and s ∈ S.

• A f is s-testable (for A) if λ s 6= λ s
f .

On testing output faults in the McCluskey Fault Model 3

• A f is strongly s-testable (for A) if λ s 6= λ s′
f for all s′ ∈ S.

We extend this definition to subsets S′ ⊆ S by calling A f (strongly) S′-testable (for A) if A f is
(strongly) s-testable for every s∈ S′. A f is (strongly) testable for A if it is (strongly) S-testable
for A.
Note that in the case #(O) = 1 no A f is testable on nonempty S′. We assume for the following
#(O)> 1. Strong testability respects isomorphisms in the sense that A f is not strongly testable
on any nonempty subset of S if A f =̃ A. This is not true for testability. Fig. 1.1 shows such a
pair of isomorphic automata which are both testable for each other. In this situation testability
depends on the isomorphism.

Figure 1.1 Isomorphisms and faults

Observation 1.3 Let A,A f ∈ Autom(S) with A =̃ A f and A minimal. A f is testable for A if
and only if there exists an isomorphism φ with A f =̃φ A and φ(s) 6= s for all s ∈ S, i.e. φ must
be free of fixpoints.

Proof. If s ∈ S exists with φ(s) = s then λ s = λ s
f and A f is not s-testable. Conversely,

suppose there exists s ∈ S with λ s
f = λ s. We know λ φ(s) = λ s

f , hence λ s = λ φ(s). Since A is
minimal s = φ(s) and we find a fixpoint – a contradiction. 2

The second extension of our definitions deals with fault classes. For a given A ∈ Autom(S)
a fault class F (for A) is a subset of Autom(S) with A /∈F . Such fault classes are mainly
derived from a common schema of automata – both for Mealy- and Moore-type presented in
fig. 1.2. Typical faults can affect the logical units Transition and Output, the Memory and the
connections between these components.

Figure 1.2 Basic structure of automata, Mealy: dotted line, Moore: hollow line

We get for example Fout(A) =
{

A f ∈ Autom(S) | δ = δ f and λ 6= λ f
}

as the class
of output faults. For a Moore-automaton A we can single out Fmout = {A f ∈

4 Ulrike Brandt, Hermann K.-G. Walter

Fout|A f is a Moore-automaton}. Note that an output fault A f of a Moore-automaton does
not need to be a Moore-automaton.

For S′ ⊆ S such a fault class F is (strongly) S′-testable (for A) if every A f ∈F is (strongly)
S′-testable. If F is (strongly) S-testable then F is (strongly) testable for A.

We turn our interest to fault-testing. Consider A ∈Autom(S), S′ ⊆ S and a fault class Fof
A. A set T ⊆ I∗ is a S′-test for A and F if and only if

∀ A f ∈F , s ∈ S′, λ
s 6= λ

s
f ∃ w ∈ T : λ

s(w) 6= λ
s
f (w)

Since Autom(S), I and O are all finite sets a finite S′-test T always exists for a given A and
F . Note, that F need not be S′-testable. T is a strong S′-test for A and F if and only if

∀ A f ∈F ,s ∈ S, s′ ∈ S′ ∃ w ∈ T : λ
s′(w) 6= λ

s
f (w).

In this case, a strong (finite) S′-test exists if and only if F is strongly S′-testable for A. A
strong S′-test is always a S′-test. As before, T is a (strong) test (for A and F) if and only if
T is a (strong) S-test. In connection with tests the following fact is fundamental.

Observation 1.4 If A, A f ∈ Autom(S)and s, s′ ∈ S then for all v, w ∈ I∗

λ
s(vw) = λ

s′
f (vw)⇔ (λ s(v) = λ

s′
f (v) and λ

δ (v,s)(w) = λ
δ f (v,s′)
f (w)).

Proof. By the response formula we know

λ (vw,s) = λ
s(v)λ δ (v,s)(w) and λ

s′
f (vw) = λ

s′
f (v)λ

δ f (v,s′)
f (w).

If λ s(vw) = λ s′
f (vw) then λ s(v) = λ s′

f (v), since |λ s(v)|= |λ s′
f (v)|. But then by cancellation

λ δ (v,s)(w) = λ
δ f (v,s′)
f (w) 2

For example, we directly obtain from this fact, that (T\w) ∪ ww′ is a (strong) S′-test for any
(strong) S′-test T , w′ ∈ I∗ and w ∈ T .

Example 1.5 (reset automata) Consider an alphabet X and B = {0,1}. The (letter-)reset
automaton ResX = (X ,X ,B,δ ,λ) is given by

δ (x,y) = x and λ (x,y) = δδδ x,y (δδδ : Kronecker symbol) (x,y ∈ X).

The fault class is given in the following way. Consider a mapping σ : X → X . Then define
Resσ ,X = (X ,X ,B,δσ ,λ) with δσ (x,y) = σ(x)(x,y ∈ X) leaving λ unchanged. The fault
class is under consideration the collection of all these automata where σ is not the identity
on X . This fault class includes quite typical faults considering fig. 1.2. For example some of
the register cells may be stuck at a certain value. Note that cuts in the connections may also
cause such faults.

Now for a given fault A f = Resσ ,X we use input words of the form w = xx (x ∈ X). We
get for all y ∈ X : λ (xx,y) = δδδ x,y1 and λ f (xx,y) = δδδ x,yδδδ x,σ(x). Since σ is not the identity on
X a x ∈ X exists with σ(x) 6= x. But now xx tests this fault. This shows that {xx | x ∈ X} is
a test for ResX and this fault class. Moreover, it is a strong test. In the next section we shall

On testing output faults in the McCluskey Fault Model 5

prove that this fact is true in a more general setting, where the automaton ResX serves as an
example. �

Our second example deals with a more refined look at faults.

Example 1.6 (switching circuits) We consider realizations of automata by switching circuits.
If we follow the standard schema for automata, the transition and output unit are usually

realized by switching circuits without feedbacks. To do this we need a binary encoding of all
three sets – inputs, outputs and states. Then transition and output become boolean functions
which can be realized by switching circuits without feedbacks. We make free use of a basic
system of gates containing the boolean functions x · y (AND), x+ y (OR), x⊕ y (EXOR) and
their complementations x ·c y (NAND), x+c y (NOR) and x⊕c y (NEXOR). Now consider a
four letter alphabet X = {a,b,c,d} and ResX . Encoding of the letters is given by

a b c d
00 01 10 11.

If we use the encodings x1x2 for the letter x and s1s2 for the state s we see the output
z = (x1⊕ s1)+

c (x2⊕ s2). The reader should bear in mind that EXOR tests for inequality of
bits. The corresponding switching circuit is shown in fig. 1.3 together with three faults – a
cut, a contact and their combination.

Figure 1.3 Fault testing

We assume that the hardware implementation of this circuit results for the cut in a stuck-
at-0-fault and for the contact in an additional OR-gate. The resulting output functions in the
presence of these faults are

zCut = x2⊕c s2, zContact = (x1⊕ (x2 + s1))+
c (s2⊕ (x2 + s1)), zComb = (x2 + s1)⊕c s2.

Decoding yields for example

λCut(x,s) = (δδδ x,a +δδδ x,c) · (δδδ a,s +δδδ c,s)+
(
δδδ x,b +δδδ x,d

)
·
(
δδδ b,s +δδδ d,s

)
.

6 Ulrike Brandt, Hermann K.-G. Walter

The following table summarizes the values for all possible inputs.

Output pattern z zcut zcontact zcomb

a b c d
a 1111 0000 0101 0000
b 0000 1101 0000 0111
c 0100 0000 1100 0000
d 0001 0101 0011 1111

Inspection of this table yields possible tests for these faults together with the corresponding
tests for the faulty automation, as shown in the next table.

Fault tests
Cut Contact Comb

00 10 ca 01 01 bb 00 11 da
01 11 db 10 10 cc 01 11 db
10 00 ac 10 11 dc 10 00 ac
11 01 bd 11 01 bd 10 10 cc

10 11 dc
11 01 bd

The test 1101 is the only test for all three faults. It corresponds to the input bd, i.e. first
the input b sends Resx to the state b and then use the input d for fault detection. �

2. Subautomata and Testability

In dealing with testability it is quite reasonable to study for an automaton A ∈Autom(S) and
a fault A f the set nontest(A,A f) = {s ∈ S | ∃s′ ∈ S : λ s = λ s′

f }.

Observation 2.1 For any two automata A,A f ∈ Autom(S):

∀x ∈ I : s ∈ nontest(A,A f)⇒ δ (x,s) ∈ nontest(A,A f).

Proof. Let s,s′ ∈ S with λ s = λ s′
f . Applying fact 1.6 for x ∈ I and w ∈ I∗ we find

λ δ (x,s)
= λ

δ f (x,s′)
f , i.e. δ (x,s) ∈ nontest(A,A f). 2

Definition 2.2 Let S′ ⊆ S,A ∈ Autom(S) and A′ ∈ Autom(S′). A′ is a subautomaton of
A(A′ ∈ sub(A)) if and only if δ ′(x,s) = δ (x,s) and λ ′(x,s) = λ (x,s) for all x ∈ I and s ∈ S′.

If A′ ∈ sub(A) then for any x ∈ I and s ∈ S′ : δ (x,s) ∈ S′. Conversely, if S′ ⊆ S satisfies
this condition then a subautomaton with state set S′ is defined by the restriction of δ and
λ to I× S′. Therefore we do not distinguish subautomata and subsets of S satisfying this
condition. In this way we get ∅,S ∈ sub(A). By obs. 2.1 nontest(A,A f) ∈ sub(A) for all

On testing output faults in the McCluskey Fault Model 7

A,A f ∈ Autom(S). There are some canonical subautomata of A ∈ Autom(S). To any s ∈ S
we can consider

reach(s,A) = {δ (w,s) | w ∈ I∗}.

By the transition formula for any x ∈ I and s′ = δ (w,s) : δ (x,s′) = δ (x,δ (w,s)) = δ (wx,s).
This proves reach(s,A) ∈ sub(A). reach is a consistent monotonic operation, that means
s ∈ reach(s,A) and reach(δ (w,s),A) ⊆ reach(s,A) for all s ∈ S and w ∈ I∗. We want to
apply obs. 2.1 to automata which have no nontrivial subautomata.

Definition 2.3 A ∈ Autom(S) is irreducible if and only if reach(s,A) = A for all s ∈ S.

Equivalently, an automaton A ∈ Autom(S) is irreducible if and only if a function reset :
S×S→ I∗ exists with: δ (reset(s,s′),s) = s′ for all s,s′ ∈ S.

If S is a singleton or empty then A is always irreducible. The automata ResX are irreducible
with the function reset(y,y′) = y′(y,y′ ∈ X).

Another way to define irreducibility is given by the following

Observation 2.4 A ∈ Autom(S) is irreducible if and only if for all S′ ∈ sub(A) : S′ 6= /0⇒
S′ = S.

Lemma 2.5 If A ∈ Autom(S) is minimal and irreducible then A f ∈ Autom(S) is strongly
testable for A if and only if A 6=̃ A f .

Proof. Suppose A 6=̃ A f and A f is not strongly testable for A. But then nontest(A,A f) 6= ∅
and therefore by Observation 2.4: nontest(A,A f) = S. By symmetry nontest(A f ,A) 6= ∅,
too. Define ψ : nontest(A f ,A)→ S by ψ(s′) = s with λ s′

f = λ s. Since A is minimal ψ

is well-defined. Since S = nontest(A,A f),ψ is surjective, and therefore ψ is a bijection.
By this nontest(A f ,A) = S. Moreover, ψ is obviously a homomorphism. In total ψ is an
isomorphism and we get a contradiction. The reverse direction is trivial. 2

For an automaton A the irreducible subautomata play an important role. We introduce

bottom(A) = {s ∈ S | ∀s′ ∈ reach(A,s) : s ∈ reach(A,s′)}.

If S is not empty, bottom(A) is also not empty. This can be seen easily by looking at the set
system {reach(A,s) | s ∈ S}. This system is partially ordered by inclusion. Since S is finite
we find bottom(A) as the union of the minimal elements. Clearly, bottom(A) ∈ sub(A). If
A′ ∈ sub(A) with state sets, then for all s ∈ S′reach(A,s) = reach(A′,s), hence bottom(A′) ∈
sub(bottom(A)). Moreover, for any s ∈ bottom(A) reach(A,s) is by definition irreducible.
Conversely, if A′ ∈ sub(A) is irreducible then A′ ∈ sub(bottom(A)).

Observation 2.6 If A ∈ Autom(S) then there exists a function down : S→ I∗ with

∀s ∈ S : δ (down(s),s) ∈ bottom(A).

8 Ulrike Brandt, Hermann K.-G. Walter

Proof. We use induction on #(S). If #(S) = 1, A = bottom(A) and the empty word will do.
Let #(S) > 1. If bottom(A) = A we can use again the empty word. Suppose bottom(A) 6=
A. Fix s 6∈ bottom(A). Then s′ ∈ reach(A,s) exists with s 6∈ reach(A,s′). Consider the
set S′ = {s′ ∈ S | s′ ∈ reach(A,s) and s 6∈ reach(A,s′)} then #(S′) < #(S), S′ is not empty
and S′ defines a subautomaton A′ of A. By induction hypothesis we find for any s′ ∈ S′

downA′(s′) with δ (downA′(s′),s′) ∈ bottom(A′) ∈ sub(bottom(A)). Moreover, for such a s′

exists a word w ∈ I∗ with δ (w,s) = s′ and we can define downA(s) = wdownA′(s′). Using
the transition formula we get

δ (wdownA′(s′),s) = δ (downA′(s′), δ (w,s)) = δ (downA′(s′),s′) ∈ bottom(A). 2

If d : S→ I∗ satisfies for s ∈ S δ (d(s),s) ∈ bottom(A), then for any w ∈ I∗ δ ((d(s)w),s) ∈
bottom(A). Hence, there are infinitely many choices for downA.

Lemma 2.7 Let A,A f ∈ Autom(S), then A f is strongly testable for A if and only if A f is
strongly bottom(A)-testable for A.

Proof. Consider s,s′ ∈ S.
If A f is strongly bottom(A)-testable for A there exists w0 ∈ I∗ with

λ
δ (downA(s,),s)(w0) 6= λ

δ f (downA(s,),s′)
f (w0).

But then by fact 1.6 λ s(downA(s)w0) 6= λ s
f (downA(s)w0). 2

We can strengthen obs 2.6 in such a way that the words downA(s) can be combined to a single
word sending all states to bottom(A).

Theorem 2.8 To any A ∈ Autom(S) there exists down(A) ∈ I∗ such that

∀s ∈ S : δ (down(A),s) ∈ bottom(A).

Proof. We use a down(s) as in obs. 2.6. Numbering the states of S from 1, . . . ,m we use the
following programming piece to construct down(A):
down(A):

w :=�
for i := 1; i≤ m; i = i+1 do

w := wdownδ (w,si)
end for
return w

If 1≤ i≤ m we can decompose down(A) = udownδ (u,si)v with suitable u,v ∈ I∗. But then
δ (down(A),si) = δ (v,δ (down(δ (u,si)),δ (u,si))). We know

δ (down(δ (u,si)),δ (u,si)) ∈ bottom(A)

and δ (v,s) ∈ bottom(A) for all s ∈ bottom(A). By this δ (down(A),si) ∈ bottom(A). 2

On testing output faults in the McCluskey Fault Model 9

Example 2.9 Construction of down(A). For k > 0 consider the Moore-automata Ak with I =
{a,b}, O = B, Sk = [0 .. 2k + 1] and δk, µk defined by

δk(a,0) = δk(b,0) = δk(b,1) = δk(a,2) = 0,
δk(a,2i+1) = 2(i+1)+1(0≤ i < k),δk(a,2i) = 2(i−1)(1 < i≤ k),δk(a,2k+1) = 2k,

δk(b,2i+1) = 2(i−1)+1(0 < i≤ k),δk(b,2i) = 2(i+1)(1≤ i < k),δk(b,2k) = 2k+1,
µk(j) = j mod 2 (j ∈ Sk).

Clearly, bottom(Ak) has only one state, namely 0. A possible downA is given by

downA(0) =2,downA(2i+1) = bi+1(0≤ i≤ k),downA(2i) = ai+1(1≤ i≤ k).

Consider the construction in the proof of th. 2.7 starting with state 0. The outcome depends
on the choices made during this construction. Choosing the odd numbers first in ascending
order and then the even ones in descending order yields down(A) = b2k+1. Proceeding the
other way round - first even, then odd ones - yields down(A) = a2k+1. �

We get the following with respect to tests. If T ⊆ I∗ is a strong bottom(A)-test for A and
A f then down(A)T is a strong test for A and A f . So the size of the test remains unchanged.
We mentioned above that bottom(A) is the union of the irreducible subautomata of A.
With respect to fault testing we refine this observation by introducing the direct sum of au-
tomata.
Let A1,2 ∈ sub(A) with state sets S1,2. If S1∩S2 = ∅ and S1∪S2 = S, A is the direct sum of
A1 and A2 (A = A1⊕A2). The direct sum is associative and commutative and we extend it to
finitely many Ai(1≤ i≤ k) obtaining A = A1⊕·· ·⊕Ak in the usual way.

Lemma 2.10 For any A∈Autom(S) bottom(A) =A1⊕·· ·⊕Ak where all Ai are irreducible.
Moreover, this decomposition is unique up to permutations of the components.

Proof. We know that any irreducible A′ ∈ sub(A) is of the form A′ = reach(A,s) for some
s ∈ S. Let s′ ∈ S. If there exists s′′ ∈ reach(A,s)∩ reach(A,s′), then s ∈ reach(A,s′′) ⊆
reach(A,s′), and therefore by irreducibility reach(A,s) = reach(A,s′)

But then consider a system s1, . . . ,sk of states with

• reach(A,si) irreducible, reach(A,si)∩ reach(A,s j) =∅ (1≤ i 6= j ≤ k) and
• ∀s ∈ S,reach(A,s) irreducible ∃1≤ i≤ k : s ∈ reach(A,si).

Now the reach(A,si) constitute the desired decomposition with Ai = reach(A,si). 2

3. Edge- and state-traverses

Traversing the transitions is an important tool to study testability and design tests. Such
traverses are quite familiar in graph-theory. In our case an additional feature is present. The
traverse must be triggered by inputs.
Therefore we define the following two functions evisitA : I∗ × S→ 2I×S and svisitA : I∗ →
2S by

evisitA(w,s) = {(x,s′) ∈ I×S
∣∣∃u ∈ I∗ : ux≤ w(pre f) and δ (u,s) = s′}.

10 Ulrike Brandt, Hermann K.-G. Walter

and

svisitA(w,s) = {s′ ∈ S
∣∣∃u ∈ I∗ : u 6=�,u≤ w(pre f) and δ (u,s) = s′}(w ∈ I∗,s ∈ S).

Definition 3.1 Let A ∈ Autom(S), s ∈ S and w ∈ I∗. w is an edge-traverse for s, if
evisitA (w, s) = I×S, and a state-traverse for s, if svisitA(w,s) = S.

We call w ∈ I∗ an edge-(state-)traverse of A if w is an edge-(state-)traverse for all s ∈ S.
Clearly, an edge-traverse for s is always a state-traverse for s. If a state-traverse exists, A must
be irreducible.

Example 3.2 We study again the automata Ak from ex. 2.8. We calculate

δk(bi,2i+1) = δk(bk+i,2(k− i+1)) = 1(0≤ i≤ k).

Then aba2k+1 is a state-traverse for 1, bia2k+1 is a state-traverse for 2i + 1 (i >0) and bk+i

a2k+1 a state-traverse for 2(k - i + 1)(1 ≤ i ≤ k). For 0 no state-traverse exists. Suppose
s ∈ Sk exists such that an edge-traverse w for s can be found. But then both (b, 1) and (a,
2) are elements of evisitAk (w,s). Since δk(a,0) = δk(b,0) = 0 this is impossible. Hence, for
no state s ∈ Sk an edge-traverse can be found. Look for example at state 1. Then evisitAk
(a2kb2k+1ab,1) = {a, b} ×Sk \ (a,2). �

Lemma 3.3 Let A ∈ Autom(S), s ∈ S and w ∈ I∗. Then w is an edge-traverse for s if and
only if λ s(w) 6= λ s

f (w) for all A f ∈Fout(A).

Proof. Consider A f ∈ Fout(A). Then there exists (x,s′) ∈ I× S with λ (x,s′) 6= λ f (x,s′).
Since w is an edge-traverse for s,w = uxv with δ (u,s)= s′. By fact 1.6 we get λ s(ux) 6= λ s

f (ux)
and then λ s(w) = λ s(uxv) 6= λ s

f (uxv) = λ s
f (w). Hence w is a s-test.

Conversly, assume w is not an edge-traverse for s. Then (x,s′) ∈ I× S exists with (x, s’)
/∈ evisitA(w,s). Consider the fault A f ∈Fout(A) given by λ f (x,s′′) = λ (x,s′′) if s′′ 6= s′ and
λ f (x,s′) 6= λ (x,s′)(x ∈ I,s′′ ∈ S) (#(O)> 1!). Then λ s(w) = λ s

f (w) - a contradiction. Hence
w must be an edge-traverse for s. 2

We get a lower bound for the length of those w ∈ I∗ which are edge-traverses for s on A,
because we have to meet every pair (x,s′). If n = #(X) and #(S) = m then |w| ≥ nm.

With little changes the same result is true for Moore-automata A and Fmout(A) and state-
traverses.

Lemma 3.4 Let A ∈ Autom(S) a Moore-automaton, and w ∈ I∗. Then w is a state-traverse
for s if and only if λ s(w) 6= λ s

f for all A f ∈Fmout(A)

Proof. Consider A f ∈ Fmout(A). Then there exists s′ ∈ S with µ(s′) 6= µ f (s′). Since
w is a state-traverse for s,w = uxv with δ (ux,s) = s′. Note λ (ux,s) = λ (u,s)µ(s′) 6=
λ f (u,s)µ f (s′) = λ f (ux,s). Again by fact 1.6 λ s(w) 6= λ s

f (w).

Conversly, assume w is not a state-traverse for s. Then s′ ∈ S exists with s′ /∈ svisitA(w,s).
Consider the fault A f ∈Fmout(A) given by µ f (s′′) = µ(s′′) if s′′ 6= s′ and µ f (s′) 6= µ(s′)(x ∈
I,s′′ ∈ S). Then λ s(w) = λ s

f (w) - a contradiction. Hence w must be a state-traverse for s. 2

On testing output faults in the McCluskey Fault Model 11

For a state-traverse w we clearly have the lower bound |w| ≥m. Note at this point that turning
a Mealy-automaton into an equivalent Moore-automaton changes the character of the fault.
An output fault becomes a transition fault.

Applying the transition formula we get straight forward that for an edge-(state-)traverse w
of s and for any v ∈ I∗ wv is an edge-(state-)traverse for s, too. Moreover, if w is an edge-
(state-)traverse for A then for any u,v ∈ I∗ uwv is also an edge-(state-)traverse of A.
The existence of such traverses for irreducible automata is asserted by the following two
results where the proofs additionally exhibit algorithms to find these traverses. We start with
the easier task determining state-traverses.

Lemma 3.5 For any irreducible A ∈ Autom(S) a state-traverse for A exists.

Proof. We use a function reset with reset(s,s) 6= 2 for s ∈ S associated to (the irre-
ducible) A and number the set of states S = {s1, . . . ,sm}. Consider the word start =
reset(s1,s2) . . .reset(sm−1,sm). If s ∈ S and u ∈ I∗ then the word ureset(δ (u,s),s1)start is
always a state-traverse for s. We obtain a state-traverse of A by the following programming
piece which uses the functions trav(w) = {s ∈ S | w is a state-traverse for s}(w ∈ I∗)
strav(A):

w := �
trav := ∅
while trav ⊂ S do

choose(s ∈ S\ trav)
w := wreset(δ (w,s),s1)start
trav := trav(w)

end while
return w 2

We get the following worst-case estimate for |strav(A)|. Clearly, we can choose reset(s,s′)
such that |reset(s,s′)| ≤ m−1. Then |start| ≤ (m−1)2. Suppose we can eliminate only one
state in each turn of the loop then there are m such turns. In total |strav(A)| ≤ m(m−1)2. It
is not surprising that this upper bound is independent of the numbers of inputs.
We refine this construction to get an edge-traverse visiting all outgoing edges of a state s if
we meet s during a state-traverse.

Theorem 3.6 For any irreducible A ∈ Autom(S) there exists an edge-traverse.

Proof. Consider again a function reset(s,s′) for A. Again let S = {S1,, Sm} furthermore let
I = {x1, . . . ,xn}. Define a function edge : S→ I∗ by

edge(s) = x1reset(δ (x1,s),s) . . .reset(δ (xn−1,s)xn.

edge(s) traverses all outgoing edges of s if we perform δ (edge(s),s), i.e. for all x ∈
I there exists u ∈ I∗ with ux ≤ edge(s)(pref). This time consider the word start =
edge(s1)reset(s1,s2)edge(s2)...reset(sm−1,sm−2)edge(sm).

12 Ulrike Brandt, Hermann K.-G. Walter

We use the function etrav(w) = {s ∈ S | w is an edge-traverse for s} for the following
programming piece:
etrav(A):

w :=�
etrav =∅
while etrav ⊂ S do

choose(s ∈ S\ etrav)
w := wreset(δ (w,s),s1)start
etrav := etrav(w)

end while
return w

2

A worst case estimate can be derived as follows. As before |reset(s,s′)| ≤ m−1. Then

|edge(s)| ≤ (n−1)(m−1)+1,

and then

|start| ≤ m((n−1)(m−1)+1)+(m−1)m = nm(m−1)+m

In the worst case only one state is eliminated at each turn of the loop. At each turn
|reset(δ (w,s),s1)start| is added to |w|. Since there are m such turns we obtain |strav(A)| ≤
m2(n(m−1)+1).

Example 3.7 (edge- and state-traverses) Consider for n > 0 X = {x1, . . . ,xn} and ResX . We
use the function reset(y,x) = x(x,y ∈ X). Then the construction given for state-traverses
yields start = x2 . . .xn and starting with state x1 after the first run of the loop w = x1 . . .xn.
Now trav(w) = S. Hence, no further loop follows and we obtain strav(ResX) = x1 . . .xn.

Turning to edge-traverses the construction of th.3.6 gives for s ∈ S edge(s) = x1sx2 . . .sxn.
There are n runs of the loop. We obtain etrav(ResX) = x1edge(x1)x2edge(x2) . . .xnedge(xn).
Note that |etrav(ResX)|= 2n2. �

4. Output faults

We are now in the position to deal with testing output faults. In other words we design tests
for A ∈ Autom(S) and Fout(A), respectively Fmout(A) in case A is a Moore-automaton.

Theorem 4.1 If A ∈Autom(S) is irreducible then Fout(A) is strongly testable for A and any
edge-traverse is a test for Fout(A) and A. If A is a Moore-automaton, then any state-traverse
is a test for Fmout(A) and A.

Proof. By th.3.6 an edge-traverse w for A exists. By le.3.2 Fout(A) is testable and w is a test
for Fout(A). 2

Next we consider direct sums of irreducible automata.

On testing output faults in the McCluskey Fault Model 13

Lemma 4.2 If A ∈ Autom(S) with A = bottom(A) then a w ∈ I∗ exists such that w is a test
for A and Fout(A).

Proof. We know A=A1⊕·· ·⊕Ak where Ai ∈Autom(Si) is irreducible for 1≤ i≤ k. Choose
an edge-traverse wi for any Ai. Let w = w1 . . .wk. Then w is an edge-traverse for A and
all Ai. If A f ∈ Fout(A) then bottom(A f) = A f . Since δ = δ f we get the corresponding
decomposition A f = A f 1⊕·· ·⊕A f k where Ai = A f i or A f i ∈Fout(Ai) (1≤ i≤ k). Consider
s ∈ S with λ s 6= λ s

f then for some 1≤ i≤ k : s ∈ Si. In this case A f i ∈Fout(Ai) and w is a test
for Ai. But then λ s(w) = λ s

i (w) 6= λ s
f i(w) = λ s

f (w). 2

Theorem 4.3 If A ∈ Autom(S) and A f ∈ Fout(A), then A f is testable if and only if A f is
bottom(A)-testable. Moreover, a w ∈ I∗ exists, such that w is a test for all testable A f ∈
Fout(A).

Proof. If A f is testable, we know a fortiori that A f is bottom(A)-testable.
Conversely, suppose A f is bottom(A)-testable. Since δ = δ f bottom(A f) is a testable fault
for bottom(A). By le. 4.2 there exists a wo ∈ I∗ (independent of A f) such that wo is a
test for bottom(A) and bottom(A f). But wo is also a test for bottom(A) and A f . Let w =
down(A)wo. Using δ = δ f , fact 1.6 and the same argument as in the proof of le.3.2 we can
show, that A f ist testable and w is a test for A and A f . 2

Example 4.4 (testing output faults) Consider the automata Ak from ex. 2.6 where I = {a, b}.
Let A f ∈Fmout(A) with µ f (0) = 1. Then A f is bottom(Ak)-testable and any w ∈ I∗\2 is
a bottom(Ak)-test. By th.4.3 A f is testable and in connection with ex. 3.1 a2k+1w is a test
for A f , but a2k+1 alone ist a test for A f . If µ(0) = 0, A f is not testable. If w ∈ I∗ is a test,
then w = xw′ for x ∈ I and w′ ∈ I∗. If x = a, then the fault given by µ f (2) = 1 cannot be
tested, and if x = b the fault given by µ(1) = 0 is not testable. Hence, any test for A f needs
at least two testwords. For Ak and s ∈ Sk\0 we find evisitAk(a

2kb2kab,1) = (I× Sk)\(a,2).
But then evisitAk (b

ia2kb2kab,2i+ 1) = evisitAk(b
k+ia2kb2kab,2(k− i+ 1)) = (I× Sk)\(a,2)

(0≤ i≤ k). Now, T0 = {bia2kb2kab|0≤ i≤ k}∪{bk+ia2kb2kab|0≤ i≤ k} is a test for every
A f ∈Fout(Ak) with λ f (a,2) = 0. For A f ∈Fout(Ak) with λ f (a,2) = 1 a2k+1 is a test. In total
T = To∪a2k+1 is a test for Ak and Fout(Ak). �

References

[1] R. BOUTE and E.J. MCCLUSKEY, “Fault Equivalence in Sequential Machines”, Tech-
nical Report No. 5, Computer Systems Laboratory, Stanford University (June 1971)

[2] W. BRAUER, “Automatentheorie”, B.G. Teubner, 1984

[3] E. F. MOORE, Gedanken-Experiments on sequential machines, in: C.E. SHANNON,
J. MCCARTHY, Automata Studies, Ann. Math. Studies 34, Princeton University Press,
Princeton 1956

[4] J.F. POAGE and E.J. MCCLUSKEY, “Derivation of Optimum Test Sequences for Se-
quential Machines”, Proc. 5th Ann. Sympos. on Switching Theory and Logical Design,
pp. 121-132 (1964).

